Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative
نویسندگان
چکیده
Effective pretreatment of spectral reflectance is vital to model accuracy in soil parameter estimation. However, the classic integer derivative has some disadvantages, including spectral information loss and the introduction of high-frequency noise. In this paper, the fractional order derivative algorithm was applied to the pretreatment and partial least squares regression (PLSR) was used to assess the clay content of desert soils. Overall, 103 soil samples were collected from the Ebinur Lake basin in the Xinjiang Uighur Autonomous Region of China, and used as data sets for calibration and validation. Following laboratory measurements of spectral reflectance and clay content, the raw spectral reflectance and absorbance data were treated using the fractional derivative order from the 0.0 to the 2.0 order (order interval: 0.2). The ratio of performance to deviation (RPD), determinant coefficients of calibration ([Formula: see text]), root mean square errors of calibration (RMSEC), determinant coefficients of prediction ([Formula: see text]), and root mean square errors of prediction (RMSEP) were applied to assess the performance of predicting models. The results showed that models built on the fractional derivative order performed better than when using the classic integer derivative. Comparison of the predictive effects of 22 models for estimating clay content, calibrated by PLSR, showed that those models based on the fractional derivative 1.8 order of spectral reflectance ([Formula: see text] = 0.907, RMSEC = 0.425%, [Formula: see text] = 0.916, RMSEP = 0.364%, and RPD = 2.484 ≥ 2.000) and absorbance ([Formula: see text] = 0.888, RMSEC = 0.446%, [Formula: see text] = 0.918, RMSEP = 0.383% and RPD = 2.511 ≥ 2.000) were most effective. Furthermore, they performed well in quantitative estimations of the clay content of soils in the study area.
منابع مشابه
Improving the clay, silt and sand of soil prediction by removing the influence of moisture on reflectance using EPO
Moisture is one of the most important factors that affects soil reflectance spectra. Time and spatial variability of soil moisture leads to reducing the capability of spectroscopy in soil properties estimation. Developing a method that could lessen the effect of moisture on soil properly prediction using spectrometry, is necessary. This paper utilises an external parameter orthogonalisation (EP...
متن کاملSpectroscopic Based Quantitative Mapping of Contaminant Elements in Dumped Soils of a Copper Mine
Possibility of mapping the distribution of Arsenic and Chromium in a mining area was investigated using combination of (VNIR) reflectance spectroscopy and geostatistical analysis. Fifty five soil samples were gathered from a waste dump at Sarcheshmeh copper mine and VNIR reflectance spectra were measured in a laboratory. Savitzky- Golay first derivative was used as the main pre-processing metho...
متن کاملDevelopment of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...
متن کاملPrediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy
Soil organic carbon is a key soil property related to soil fertility, aggregate stability and the exchange of CO2 with the atmosphere. Existing soil maps and inventories can rarely be used to monitor the state and evolution in soil organic carbon content due to their poor spatial resolution, lack of consistency and high updating costs. Visible and Near Infrared diffuse reflectance spectroscopy ...
متن کاملNear- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content.
Rapid and nondestructive methods such as diffuse reflectance infrared spectroscopy provide potentially useful alternatives to time-consuming chemical methods of soil metal analysis. To assess the utility of near-infrared reflectance spectroscopy (NIRS) and diffuse mid-infrared reflectance spectroscopy (DRIFTS) for soil metal determination, 70 soil samples from the metal mining region of Tarnows...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017